Single Spin Asymmetry Results From Hall-A Neutron Transversity Experiment

Kalyan Allada Jefferson Lab

(For Hall-A E06-010 Collaboration)

XIX International Workshop on Deep Inelastic Scattering (2011) 14th April, Newport News, VA, USA

Semi-inclusive DIS

- Detect one hadron in coincidence with the scattered electron
- Flavor tagging is possible through fragmentation function
- $z = E_h/v$ at least > 0.2

Semi-inclusive DIS

$$\frac{d\sigma}{dxdyd\phi_S dzd\phi_h dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)}.$$

$$\{F_{UU,T} + \dots \\ + \varepsilon \cos(2\phi_h) \cdot F_{UU}^{\cos(2\phi_h)} + \dots \\ + S_L[\varepsilon \sin(2\phi_h) \cdot F_{UL}^{\sin(2\phi_h)} + \dots] \\ + S_T[\varepsilon \sin(\phi_h + \phi_S) \cdot F_{UT}^{\sin(\phi_h + \phi_S)}]$$
Pretzelosity
$$\frac{1}{\beta_{1T}} = \frac{1}{\delta_{1T}} - \frac{1}{$$

 S_L , S_T : Target Polarization; λ_e : Beam Polarization

Access to Leading Twist TMDs in SIDIS

		Quark polarization		
		Un-Polarized	Longitudinally Polarized	Transversely Polarized
Nucleon Polarization	U	$f_1 = \bullet$		$h_1^{\perp} = \uparrow$ - \downarrow Boer-Mulder
	L		$g_1 = -$ Helicity	$h_{1L}^{\perp} = - $
	Т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\bullet} - \underbrace{\bullet}_{\bullet}$ Sivers	$g_{1T} = \begin{array}{c} \bullet \\ \bullet \\ \end{array}$	$h_{1T} = $ Transversity $h_{1T}^{\perp} = $ Pretzelosity

: Probed by E06-010

(Jin Huang's talk)

- → Nucleon Spin
- → Quark Spin

Collins and Sivers Moments in SIDIS

Collins:
$$A_{UT}^{Collins} \propto \frac{\sum_{q} e_q^2 h_1^q(x) H_1^{\perp(1)q}(z)}{\sum_{q} e_q^2 f_1^q(x) D_1^q(z)}$$

- Transversely polarized quark generates left-right asymmetry during fragmentation
- Least known leading twist quark distribution function
- Integral over x_b gives the tensor charge of the nucleon
 - Fundamental quantity, calculable in Lattice QCD

$$A_{UT}^{Sivers} \propto \frac{\sum_{q} e_q^2 f_{1T}^{\perp (1)q}(x) D_1^q(z)}{\sum_{q} e_q^2 f_1^q(x) D_1^q(z)}$$

- Left-right asymmetric quark distribution in a transversely polarized nucleon
- ullet Related to the angular momentum of quarks $L_{_{\rm q}}$
- Final state internactions (FSI) can lead to non-zero asymmtries (Brodsky, Hwang, Schmidt, 2002)

Currently Available SIDIS Data on A

- Currently available data in SIDIS :
 - HERMES proton (2002-2005)
 - COMPASS proton (2007) and (2010-11)
 - COMPASS deuteron (2004-2006)
 (deuteron asymmetries are consistent with zero)

04/14/11

Kalyan Allada, XIX International Workshop on DIS(2011)

E06-010 Experiment in Hall-A

- First measurement of SSA on transversely polarized ³He target
- Run period: Oct 2008 Feb 2009
- 40 cm polarized ³He target cell
- Beam energy: 5.9 GeV
- BigBite at 30° as Electron Arm
 - $P_e = 0.6 2.2 \text{ GeV/c}$
 - Acceptance : 64 msr
- HRS-L at 16° as Hadron Arm
 - $P_h = 2.35 \text{ GeV/c}$
 - Acceptance : 6msr

³He[†] (e, e' h)X

$$h = \pi^{+/-}, K^{+/-}$$

Access to Transverse Spin Observables in SIDIS

Separate different effects through azimuthal angular dependence

• Collins asymmetry:

$$\sigma_{UT}^{SIDIS} \propto \sin(\phi_h + \phi_S) \; h_1 \otimes H_1^{\perp}$$

• Sivers asymmetry:

$$\sigma_{UT}^{SIDIS} \propto \sin(\phi_h - \phi_S) f_{1T}^{\perp} \otimes D_1$$

"Pretzelosity":

$$\sigma_{UT}^{SIDIS} \propto \sin(3\phi_h - \phi_S) \; h_{1T}^{\perp} \otimes H_1^{\perp}$$

Double-spin asymmetry:

(long. polarized beam)

$$\sigma_{LT}^{SIDIS} \propto \cos(\phi_h - \phi_S) \, g_{1T} \otimes D_1$$

- Target spin orientations: up-down and left-right (increases angular coverage)
- Automatic target spin-flip every 20 mins (keeps systematics due to target under control)

$$A_{UT}(\phi_h, \phi_S) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

Angular Coverage

Different colors corresponds to different target spin states - left, right, up and down

Polarized ³He Target

- Effectively a polarized neutron target
- ³He mix with Rb+K hybrid cell, $L(n) = 10^{36} \text{cm}^2/\text{s}$
- Polarimetry using NMR and EPR
- Avg. polarization : ~ 65%

HRS and BigBite Spectrometers

↓ Large Acceptance BigBite Spectrometer (electron arm)

Particle Identification

Hadron Identification from HRS

Electron PID from BigBite

Data Analysis

- Kinematic cuts:
 - $Q^2 > 1.0 \text{ GeV}^2$
 - W > 2.3 GeV
 - W' > 1.6 GeV

Asymmetry:

$$A(\phi_h, \phi_S) = \frac{1}{|S_T|} \frac{Y_{\phi_h, \phi_S} - Y_{\phi_h, \phi_{S+\pi}}}{Y_{\phi_h, \phi_S} + Y_{\phi_h, \phi_{S+\pi}}}$$

- Normalized yields are formed taking into account: beam charge, DAQ dead time, detector efficiencies, target density etc...
- Two teams did independent analysis using:
 - Angular bin fit method (using asymmetry of local spin pairs)
 - Maximum Likelihood Extraction (MLE) method
- Account for small amount of N₂ in the ³He target cell
 - Nitrogen dilution:

$$A_{raw} = f \cdot P_{^{3}\text{He}} \cdot A_{^{3}\text{He}}$$

$$f = \frac{N_{^{3}\text{He}}\sigma_{^{3}\text{He}}}{N_{^{3}\text{He}}\sigma_{^{3}\text{He}} + N_{N_{2}}\sigma_{N_{2}}}$$

MLE vs Local Spin Pair Method

Consistency check between two methods

Checks: Inclusive Raw Asymmetry

(Witness channels on ³He, not corrected for target polarization and dilution)

³He A_{UT} Results

- Consistent with zero for π^-
- Favors negative amplitude for π^+ Sivers asymmetry

Extraction of neutron results from ³He:

$$A_{^{3}\text{He}}^{C/S} = P_n \cdot (1 - f_p) \cdot A_n^{C/S} + P_p f_p \cdot A_p^{C/S}$$

$$P_n = 0.86^{+0.036}_{-0.02}$$
 and $P_p = -0.028^{+0.009}_{-0.004}$

$$f_p = {2\sigma_p \over \sigma_{^3{
m He}}}$$
 Cross-section ratio is determined using H $_2$ and $^3{
m He}$ reference cell runs

Neutron A_{UT} **Results**

$$\sim 2.0 \text{ GeV}^2$$

 $\sim 2.8 \text{ GeV}^2$
 ~ 0.5

Collins Moments

- Consistent with zero for π^-
- Consistent with zero for π^+ except at x ~ 0.34

Sivers Moments

- Sensitive to the d-quark
- Consistent with zero for π^-
- Favors negative values for π^+

Blue: Fit uncertainties due to neglecting other angular terms

Summary

- First measurement of Collins and Sivers moments (A_{UT}) on ³He target
- A_{UT} results on neutron:
 - Collins: π^- and π^+ asymmetries are consistent with zero except at x~0.34 for π^+
 - Sivers: π^- is consistent with zero but π^+ favor negative values
- Along with existing proton and deuteron data, neutron results will help in constraining d-quark Sivers function using global fits.
- Results will be soon out for publication
- JLab 12GeV Transversity experiment using a Solenoid detector (SoLID) will improve the kinematical coverage in x, Q², P_T and z and achieve much higher precision

Backup Slides

Kinematics Correlation

Transversity

$$A_{UT}^{Collins} = \frac{(1-y)}{(1-y+y^2/2)} \frac{\sum_{q} e_q^2 h_1^q(x) H_1^{\perp(1)q}(z)}{\sum_{q} e_q^2 f_1^q(x) D_1^q(z)}$$

 $D_{nn} = 0.2 - 0.4$ (in Hall-A E06-010 Expt.)

Sivers

$$A_{UT}^{Sivers} = \frac{\sum_{q} e_q^2 f_{1T}^{\perp(1)q}(x) D_1^q(z)}{\sum_{q} e_q^2 f_1^q(x) D_1^q(z)}$$